Modelling of Damage Evolution in Braided Composites: Recent Developments

نویسندگان

  • Chen Wang
  • Anish Roy
  • Vadim V. Silberschmidt
  • Zhong Chen
چکیده

Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREDICTING THE STIFFNESS OF BIAXIAL BRAIDED FIBER COMPOSITES BY INCORPORATION OF CARBON NANO FIBER

In this study, carbon nano fibers (CNFs) were mixed into epoxy resin through a magnetic stirrer and again mixed using ultra sonicator. Using hand layup technique, biaxial braided fiber composites were prepared with unfilled, 0.2, 0.5 and 1 wt% CNF. Tensile test and shear test was performed to identify the tensile strength and shear strength of the composites. Fractured surface of the tensile sp...

متن کامل

New Directions in Braiding

It is the intent of this manuscript to provide a general treatment of braiding: past, present, and future. A history and evolution of braiding, braiding machinery, and related engineering developments is provided with emphasis on the design, manufacture, and analysis of braided fabrics and composites. Some recent developments are briefly described, including: 1. a composite braider with axial y...

متن کامل

Mechanics Analysis of 3d Braided Composites Based on the Helix Geometry Model

The helix geometry model of 3D braided composites has been presented, which truly reflects the braided manner and coincides with the actual configuration of the braided composites. The longitudinal tensile stress-strain relationships and the strength of 3D braided composites under the tension loading have been predicted by a finite multiphase element method (FMEM) based on the helix geometry mo...

متن کامل

Analysis of the Microstructure and Deformation of Woven Composites Using Microfocus X-ray Diffraction

Unidirectional (UD) prepreg based laminates, consolidated in an autoclave, have been the principal material choice for the composites industry especially for aerospace application. There are concerns, however, about the damage tolerance and compression after impact (CAI) performance of UD composites, in addition to the high manufacturing and material costs. In recent years, the composites indus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017